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1 Spinodal decomposition is a phenomenon frequen
Zn alloy is rapidly quenched from 400 to 100 �C, the
decomposition phenomenon.
This paper reports a fully discretized scheme for the Cahn–Hilliard equation. The method
uses a convexity-splitting scheme to discretize in the temporal variable and a nonconform-
ing finite element method to discretize in the spatial variable. And, the scheme can pre-
serve the mass conservation and energy dissipation properties of the original problem.
Some typical phase transition phenomena are also observed through the numerical
examples.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This paper is devoted to the numerical method for the Cahn–Hilliard equation, which is a fourth-order nonlinear parabolic
diffusion equation of the type
@u
@t
¼ �e2D2uþ DuðuÞ; ð1Þ
where u is a function in the spatial variable x and temporal variable t.
The Cahn–Hilliard equation was first introduced by Cahn and Hilliard in the 1950s, in order to model the spinodal decom-

position1 phenomenologically [4,5]. The equation has since become important, especially in applied sciences where it is used
frequently [1,3,28,36]. In literatures u can stand for an order parameter or other phase variable of physical meaning.

Attempts to solve the Cahn–Hilliard equation numerically have a long history, which can be dated back to Langer, Bar-on
and Miller’s 1975 study [31]. In this research, the Cahn–Hilliard equation was solved numerically for numerical modeling
and simulation of phase transition phenomena. Elliott and French’s paper [14] is one of the earliest works totally devoted
to numerically solving the Cahn–Hilliard equation, though Elliott and Zheng had mentioned the Galerkin approximation
of the Cahn–Hilliard equation in a slightly earlier study [18].

Numerous studies have been published on the numerical solution of the Cahn–Hilliard equation during the past 20 years.
Elliott and French [14] discussed the spline finite element method for the 1D problem, and offered a fully discretized method
with their theoretical analysis. When higher-dimensional spaces are taken into account, however, it is much more difficult to
construct finite element space with full continuity. In [15], Elliott and French made use of the famous Morley element for
. All rights reserved.
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tly encountered in the material sciences. For instance, as reported in [35], as the homogeneous Al-rich Al–
alloy would separate into a distinct Al-rich part and a distinct Zn-rich part. This is a typical spinodal
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constructing finite element space, and presented a semi-discretized scheme; it should be noted, though, that the theoretical
analysis therein did not emphasize the impact of characteristic parameters in numerical implementation. The authors of [16]
followed the derivation of the conservation law, to rewrite the Cahn–Hilliard equation as a system of second-order problems
to be solved numerically by lower-degree polynomials, and they presented both a semi and fully discretized scheme. Second-
order splitting methods were also discussed in [10] and [17] in different contexts.

Nevertheless, as pointed out by Du and Nicolaides [11], the validity of the theoretical analysis in [15,16] depends on an
assumption, say the boundness of the maximum of the solution, which might not be obviously true for a fully discretized
scheme. In the same paper, Du and Nicolaides constructed a numerical method for 1D problem whereby the boundness
of the maximum was guaranteed, and they also presented the error analysis.

Besides this early research on the theory of finite element methods for the Cahn–Hilliard equation, some works concen-
trated on preserving some key properties of the Cahn–Hilliard equation through numerical simulation. Because of the nature
of the finite element methods, mass conservation is easily achieved. Energy dissipation is also considered in some works,
among which the early ones include [16,11] also [25]. In fact, energy dissipation has become one of the most important cri-
teria for numerical methods. In addition, long-time behavior is also a key feature of the Cahn–Hilliard equation. The long-
time behavior of the numerical solution was considered in [13,24].

So far, finite element methods for the Cahn–Hilliard equation have elicited the research focused on the numerical method
for other problems. For example, Blowey and Barrett developed finite element methods for some nonstandard Cahn–Hil-
liard-type equations; see, e.g., [2] and the references therein. Feng and coauthors developed the conforming and mixed finite
element method for the Cahn–Hilliard equation, and considered further some other models as the asymptotic limit of the
equations; adaptive techniques were also introduced; see [21–23] and references therein. The discretization of a Navier-
stokes and Cahn-Hilliard system was discussed in [30]. We also noted that a surface finite element method was presented
in [12] to numerically solve the surface Cahn–Hilliard equation defined on hypersurfaces.

Some other methods were involved into the numerical solution of Cahn–Hilliard equation as well. Over time, the finite
difference method has been used for most practical computation.2 However, few works have focused on the theoretical anal-
ysis of using this method. We refer to [37,7,8,26,27] for the development of use of the method. The spectral and quasi-spec-
tral methods are also used frequently. We refer to [43–45] for some nonlinear energy dissipative methods based on spectral
methods by Ye and others. We also refer to [6,47] by Chen and Shen, and [29] by He, Liu and Tang for some linear schemes.
The discontinuous Galerkin method is relatively new; however, it has been used in [9,39,20,40] for the Cahn–Hilliard equa-
tion and extended to more general applications to systems coupled with the Allen–Cahn and Cahn–Hilliard equations [41].

In this paper, we consider the nonconforming finite element method for the fourth-order problem directly. Because the
interfacial energy parameter e (see Eq. (1)) can be small in practice, in general, the performance of a nonconforming method
that does not work for second-order problems will be limited. To date, few studies have reported the numerical implemen-
tation of the nonconforming method.

Currently, we consider the initial-boundary value problem of the Cahn–Hilliard equation in the 2D domain, and present a
numerical method based on the nonconforming finite element method. For the spatial variable, we use a nonconforming fi-
nite element method and discretize the fourth-order problem directly; for the temporal variable, we use of linear semi-im-
plicit convexity-splitting scheme. The remainder of the paper is organized as follows. The next section offers some
preliminary observations about the Cahn–Hilliard equation. The fully discretized scheme is presented in Section 3, and some
numerical examples are given in Section 4. Finally, Section 5 offers concluding remarks and additional comments.

2. The Cahn–Hilliard equation

In this paper, we consider the Cahn–Hilliard equation of the type
2 ‘‘Du
finite-d
@u
@t
¼ �e2D2uþ DW 0ðuÞ; ð2Þ
where e is a parameter that is small in general; D is the Laplacian operator; W(�) is a nonconvex function with double well
structure; qualitatively
WðuÞ ¼ c
4
ðu2 � 1Þ2;
where c is a parameter to illustrate the altitude of the bulk energy.
The solution of (2) is a distribution function with respect to the spatial and temporal variables; it is called the phase var-

iable in sequel. The functional of variable u
EðuÞ ¼
Z

X

e2

2
jruj2 þWðuÞ

� �
ð3Þ
e to its simplicity and small memory requirement, most of the existing phase-field simulations employed the explicit forward Euler method in time and
ifference in space” [6].
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is called the Cahn–Hilliard free energy. Note that the Cahn–Hilliard free energy is the sum of two distinct parts: bulk energy,
which is independent of the spatial gradient of the phase variable, and interfacial energy, which depends on the gradient in
the spatial variable. The Cahn–Hilliard equation describes the dissipation of Cahn–Hilliard free energy in a conservative sys-
tem. In fact, the equation fulfills the two fundamental properties,

– local mass conservation of the phase variable,
@u
@t
¼ �r �~j; ~j ¼ e2rDuþrW 0ðuÞ; ð4Þ
– dissipation of the Cahn–Hilliard free energy,
~j ¼ dE
du
: ð5Þ
The Cahn–Hilliard equation describes the evolution of the phase variable, which obeys the free energy minimization law, and
it describes the different roles played by the two parts at different stages. The equation presents the whole process as one of
competition between the two parts.

When Cahn and Hilliard first introduced the equation to model the spinodal decomposition, they viewed the phenome-
non as being the decrease of nonconvex energy functional under the restriction of the mass conservation law; they, there-
fore, set the Cahn–Hilliard equation to govern the process. So far, because of its ability to illustrate the mass and energy
properties, and the characteristics of the interface-moving structure of the solution, the Cahn–Hilliard equation has been
used widely in the applied sciences, where it has become a fundamental equation.

Let X � R2 be a bounded domain, oX the boundary of X, and n the unit outer normal vector of oX. In this paper, we con-
sider the initial-boundary value problem of the Cahn–Hilliard equation as the model problem:
@u
@t ¼ �e2D2uþ DW 0ðuÞ; x 2 X;

@nu ¼ @nDu ¼ 0; x 2 @X;
ujt¼0 ¼ u0; x 2 X:

8><
>: ð6Þ
It is easy to verify the global mass conservation and energy dissipation of the model problem. First, by the Cahn–Hilliard
equation,
0 ¼ d
dt

Z
X

udx ¼
Z

X

@u
@t

dx ¼
Z

X
�D e2Du�W 0ðuÞ
� �� �

dx ¼
Z
@X

@n e2Du�W 0ðuÞ
� �� �

dS: ð7Þ
If the function f is smooth, @nf(u) = f0(u)@nu; thus (7) is guaranteed by the boundary conditions.
Formally, if the solution u = u(t,x) is smooth, then by divergence theorem, we have that
d
dt

EðuðtÞÞ ¼ d
dt

Z
X

e2

2
jruj2 þWðuÞ

� 	
dx ¼

Z
X
�e2DuþuðuÞ
� � @u

@t
dx ¼

Z
X
�e2DuþuðuÞ
� �

D �e2DuþuðuÞ
� �

dx

¼ �
Z

X
r �e2DuþuðuÞ
� �

 

2dx 6 0;
therefore, for t1 > t2, E(u(t1)) 6 E(u(t2)). Moreover, if E(u(t1)) = E(u(t2)), then u(t) = u* for t2 6 t 6 t1, where u* is such that
�e2Du* + u(u*) = 0.

3. A fully discretizatized scheme

For the sake of simple numerical computation, we focus on the linear schemes. Because of the fundamental role that en-
ergy dissipation plays in the Cahn–Hilliard equation, we will seek to preserve the energy property for the numerical solution.

3.1. A fully discretized scheme

The simplest linear scheme for the temporal variable is the explicit Euler scheme, and it is indeed the scheme utilized
most frequently in practice. However, as the explicit Euler scheme uses the result on the current time step, the mechanism
for energy dissipation for the equation is hard to represent. The multistep method [37] was used for compensation, but little
effect was observed on preserving energy dissipation. A semi-implicit scheme was utilized in [6], where the implicit scheme
was used for the higher-order spatial derivatives, and the explicit scheme was used for lower-order derivatives. The semi-
implicit scheme is influential; however, the effect on energy dissipation was not discussed in [6]. Eyre [19] presented a semi-
implicit scheme based on the convexity splitting of the energy functional, which performed well in the 1D case, and formed
the basis of some subsequent studies. Similar to [19], we make use of a semi-implicit one-step scheme, where the lower-or-
der spatial derivative is treated explicitly, and the higher-order spatial derivative is treated implicitly, with an extra stabil-
ization term added.



7364 S. Zhang, M. Wang / Journal of Computational Physics 229 (2010) 7361–7372
Let un and un+1 be the approximations, and let the step size be k. The discretization scheme in time reads
unþ1 � un

k
¼ �e2D2unþ1 þ jDunþ1 � jDun þ DW 0ðunÞ; ð8Þ
where j is a parameter to be adjusted for the dissipation of the energy.
Once the equation has been discretized in the temporal variable, we have to solve numerically a fourth-order elliptic per-

turbation problem at every step. Since we consider the variable e to be small, we utilize a finite element that works for both
the fourth- and second-order problems. Thus for the discretization in the spatial variable, we use the modified Zienkiewicz
elements.

Let T be a triangle, and the barycentric coordinates are k1, k2, k3. For integers 1 6 i < j 6 3, and 1 6 k 6 3, k – i, k – j, define
qij ¼ k2
i kj � kik

2
j þ 2ðki � kjÞ þ

3ðrki �rkjÞ � rkk

rkk � rkk
ð2kk � 1Þ

� �
k1k2k3:
Denote
PT ¼ P2ðTÞ þ spanfqij : 1 6 i < j 6 3g:
Then the modified Zienkiewicz element is defined by (1) the shape of the element is triangle T; (2) the shape of the function
space is PT; and (3) the nodal parameters are the evaluation of the functions and first-order derivatives at the vertices of T.
We refer to [38] for a more detailed introduction to the general new Zienkiewicz-type element.

Remark 1. The modified Zienkiewicz element has the same nodal parameters as the original Zienkiewicz element, which
does not converge for fourth-order problem on general grids. However, the modified Zienkiewicz element has different
shape functions, and it converges for fourth-order problems on general shape regular grids. We refer to [38] for the
convergence of this modified Zienkiewicz element for Poisson and biharmonic equations, and refer to [46] for the
convergence for fourth-order elliptic perturbation problems.

Let T h be a triangulation of X, and Wh be the finite element space with respect to the modified Zienkiewicz element

Wh ¼ fwh 2 L2ðXÞ : whjT 2 PT ; wh and both its first-order derivatives are continuous at all vertices of the triangulationg:

Define
Vh ¼ fwh 2Wh : @nwh vanishes at the vertices along boundaryg:
Define for piecewise smooth functions v, w,
ahðv;wÞ ¼
X
T2T h

X
16i;j62

Z
T

@2v
@xi @xj

@2w
@xi @xj

; ð9Þ

bhðv ;wÞ ¼
X
T2T h

Z
T
rv � rw: ð10Þ
Let u0
h 2 Vh be an approximation to u0, and let dtn (n P 0) be the stepsize in the temporal variable. Then the fully discret-

ized scheme for problem (6) is to seek fun
hgnP0 � Vh such that for n P 0,
ðunþ1
h ; vhÞ þ e2dtnahðunþ1

h ;vhÞ þ dtnjbhðunþ1
h ;vhÞ ¼ ðun

h;vhÞ þ dtnðcþ jÞbhðun
h;vhÞ � cdtnbhððun

hÞ
3
;vhÞ; 8vh 2 Vh; ð11Þ
where j > 0 is a parameter.

Remark 2. As far as we know, Wh possesses a minimal number of total degrees of freedom among the finite element spaces
for fourth-order problems; see [38] for details.
3.2. Energy stability and derivation of the scheme

Denote
V ¼ fw 2 H2ðXÞ : @mwj@X ¼ 0g;
then the solution of the model problem (6) satisfies
@u
@t
;v

� �
¼ dE

du
;Dv

� �
; 8v 2 V : ð12Þ
We consider the one-step scheme; i.e., given that uk = u(x, tk), we are to solve approximately ~u for u(x, tk + Dt), with
Du :¼ ~u� u. Specifically, we consider decomposing E into E = E1 + E2, and solving ~u 2 V for the equation
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~u� uk

Dt
;v

� �
¼ dE1

du

� 




~u

;Dv
�
þ dE2

du

� 




uk

;Dv
!
; 8v 2 V : ð13Þ
Taking v � 1 leads to
Z
X

~u ¼
Z

X
uk;

Z
X

Du ¼ 0: ð14Þ
Then
 Z
X
ðD�1

N DuÞ ¼ 0; @mD
�1
N Duj@X ¼ 0;
where D�1
N is the inverse operator of the homogeneous Neumann–Laplace operator. Then
dE
du






~u

ðDuÞ ¼ dE1

du

� 




~u

þ dE2

du






uk

;Du

!
þ dE2

du

� 




~u

� dE2

du






uk

;Du

!

¼ Du
Dt

;D�1
N Du

� �
þ dE2

du

� 




~u

� dE2

du






Du

;Du
�

¼ � 1
Dt
rD�1

N Du;rD�1
N Du

� �
þ
Z 1

0

d2E2

du2







ukþsDu

ðDu;DuÞds:
We then obtain
Eð~uÞ � EðuÞ ¼ dE
du






~u

ðDuÞ �
Z 1

0

Z s

0

d2E
du2







ð1�sÞ~uþsuk

ðDu;DuÞdsds

¼ � 1
Dt
rD�1

N Du;rD�1
N Du

� �
þ
Z 1

0

d2E2

du2







uþsDu

ðDu;DuÞds

�
Z 1

0

Z s

0

d2E
du2







ð1�sÞ~uþsuk

ðDu;DuÞdsds:
Thus, a sufficient condition for the splitting scheme to preserve energy dissipation is given below.

Proposition 1. If there are kb and ka, with ka
6

1
2 kb, such that
d2E2

du2







w

ðDu;DuÞ 6 kakDuk2
0 ð15Þ
and
d2E
du2







w

ðDu;DuÞP kbkDuk2
0; ð16Þ
hold for all w 2 {uk + s(ũ � uk): 0 6 s 6 1}, then
Eð~uÞ � EðukÞ 6 0:

By direct computation,
d2E
du2







v

ðq; qÞ ¼ e2
Z

X
rq � rqþ

Z
X
ð3v2 � 1Þq2:
It, therefore, holds for any v and any q – 0 that
d2E
du2







v

ðq; qÞP �kqk2
0:
Let us take insight (15). We set j > 0, and then consider the following decomposition of the energy functional:
E1ðuÞ ¼
R

X
e2

2 ru � ruþ j
2 u2

� �
;

E2ðuÞ ¼
R

X
1
4 u4 � 1

2 u2 � j
2 u2

� �
:

8<
: ð17Þ
It is straightforward that for any w 2 L1(X), we can always choose j > 0, such that E2 is concave near w, and
d2E2
du2 jwðp; pÞ
� �

=ðp; pÞ is bounded negative from above, e.g., less than �1/2. When j is chosen so that the condition (15) is sat-
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isfied, energy dissipation is guaranteed. Such an energy-splitting strategy and other similar energy-stabilization methods can
be found in the literature, e.g., [33,34,3] and also [42,29]. We design the numerical scheme based on (17):
~u� uk

Dt
¼ D

dE1

du






~u

þ D
dE2

du






uk

¼ e2D2~uþ jD~u� jDuk þ cDðu3
k � ukÞ: ð18Þ
Remark 3. The stability of the numerical scheme (18) depends on a proper choice of j, while the critical value of j depends
on uk, Dt and e in a nonlinear way. However, the value of j can be verified and adjusted in an a posterior way.
Remark 4. Note that the condition (15) is indeed an assumption of the concavity of E2. The decomposition of the energy
below, which set E2 as the concave part of the energy, induces a scheme whereby the condition (15) is satisfied uncondition-
ally, namely
E1ðuÞ ¼
R

X
e2

2 ru � ruþ cu4

4

� �
;

E2ðuÞ ¼ �
R

X
cu2

2 :

8<
: ð19Þ
The corresponding numerical scheme is then
~u� u
dt
¼ e2D2~uþ cDð~u3Þ � cDu:
To make use of the scheme, we have to solve a nonlinear elliptic equation at each step, which makes the scheme more expen-
sive than (18).
Remark 5. The scheme (18) can be viewed as a first-order semi-implicit with a stability term added on. There have been
second-order schemes derived similarly. We refer to [29,37] for details.
4. Numerical examples

In this section, we introduce a series of numerical examples to illustrate the characteristics of the scheme. In Section 4.1,
we illustrate the stabilization effect of j; in Section 4.2, we simulate the typical phase transitions by numerical examples.

4.1. Stabilization effect of j

We test the stabilization effect of the parameter j with respect to e and time step Dt. The model problem is the initial-
boundary value problem (6), where c = 1 in the formulation of W. The computational domain is the unit square [0,1] � [0,1],
and the grid is a nonuniform shape regular mesh with 22,785 nodes and 45,056 triangles. The initial value is the ‘‘+” shape
function, which is precisely
u0ðx; yÞ ¼ hðjx� 0:5jÞhðjy� 0:5jÞ � 0:2;
where
hðzÞ ¼
1; 0 6 z 6 0:05;
0:5ð1þ sinð10pzÞÞ; 0:05 6 z 6 0:15;
0; 0:15 6 z 6 0:5:

8><
>:
As shown in Tables 1–3, for different e, we let j and Dt vary, and observe whether the numerical scheme will be energy
stable. In the tables, ‘‘s” stands for that the scheme is stable, whereas the computation can be carried on for long time, (the
evolution has entered coarsening stage) and the energy decreases; ‘‘�” stands for that the energy dissipation is violated with-
in a few steps, and the energy blows up.

At first, let e2 = 0.01, and let Dt and j vary. Table 1 presents the observations.
Then, let e2 = 10�5, and let Dt and j vary. Table 2 presents the observations.
Table 1
The stability of the scheme with respect to j and Dt when e2 = 0.01.

Dt 5 � 10�3 10�2 5 � 10�2 10�1

j = 0 s s s s

j = 0.5 s s s s

j = 1 s s s s



Table 2
The stability of the scheme with respect to j and Dt when e2 = 10�5.

Dt 10�5 5 � 10�5 10�4 5 � 10�4 10�3 10�2

j = 0 s � � � � �
j = 0.5 s s s � � �
j = 1 s s s s s s

Table 3
The stability of the scheme with respect to j and Dt when e2 = 10�6.

Dt 2 � 10�5 5 � 10�5 10�4 5 � 10�4 10�3 10�2

j = 0 � � � � � �
j = 0.5 � � � � � �
j = 1 s s s s s s
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Finally, let e2 = 10�6, and let Dt and j vary. Table 3 presents the observations.
It can be observed via the numerical examples that, for the benchmark problem,

1. When e is big, the energy stability is easy to be preserved even when the time step Dt is quite big; when e is small, the
energy stability is hard to preserve, and the stability effect of j is relied upon;

2. For cases in which the stability effect of j is needed, to some extent, the bigger j is, the bigger the critical value of time
step is;

3. The choice of a proper j for sake of the stability of the scheme depends on the time step and e.

4.2. Phase transition of the Cahn–Hilliard equation

In this subsection, we illustrate the typical phase separation phenomena of the Cahn–Hilliard equation through numerical
examples. To be exact, we simulate the spinodal decomposition phenomenon and the subsequent evolution of the phase var-
iable. Through the examples, we observe the dissipation of the total Cahn–Hilliard energy and the competition between the
bulk energy and the interfacial energy.

In the examples, the initial values are all small perturbations added to the uniform phase u � 0:
u0 ¼ 1:
Since W00(0) < 0, the uniform phase lies in the spinodal interval of W, and the distribution function of the small altitude will
activate a phase separation if e is small enough. We will also adjust the coefficients e and c (see the definition of W) to change
the ratio between the interfacial energy and the bulk energy.
initial data

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −5

0

5
x 10−3 t=0.095

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −1

−0.5

0

0.5

1
t=0.6

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −1

−0.5

0

0.5

1

t=1.5

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −1

−0.5

0

0.5

1
t=5.0

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −1

−0.5

0

0.5

1
t=40.0

0 0.5 1

0

0.2

0.4

0.6

0.8

1 −1

−0.5

0

0.5

1

Fig. 1. The phase evolution of Example I. For the initial value, the perturbation is located at two corners.
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In the examples, the computation domains are all the unit square (0,1) � (0,1), with uniform triangulation thereon. There
are 100 � 100 � 2 triangular cells in all, the scale of the triangulation is h = 0.01, and the stepsize is Dt = 0.001.

Example I. In this example, e2 = 10�4, c = 1, and j = 2. For the initial value, the perturbation is
Fig. 2.
bulk en
1 ¼
10�3 sin3ð p8h xÞ sin3ð p8h yÞ; ðx; yÞ 2 ð0;8hÞ � ð0;8hÞ;
�10�3 sin3ðp2 xÞ sin3ðp2 ð1� yÞÞ; ðx; yÞ 2 ð0;1=2Þ � ð1=2;1Þ:

(

As illustrated by Fig. 1, spinodal decomposition took place at the small perturbation, and was followed by coarsening.
After evolving for a long time, the system varied very slowly. Fig. 2 illustrates the evolution of the Cahn–Hilliard energy
and the bulk and interfacial energy respectively. The time t = 0.095 is when the interfacial energy arrived its maximum.

For the following examples, we define the function G, which is supported on 0 6 x � x0 6 T,
Gðx; y; x0; y0; TÞ ¼ g0ðx; x0; TÞg0ðy; y0; TÞ;
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The energy evolution of Example I. In the figure, the top line is interfacial energy, the middle line is total Cahn–Hilliard energy, and the bottom line is
ergy.
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Fig. 3. The phase evolution of Example II. For the initial value, the perturbation is in the middle of the domain.
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where the function g0 is defined by
Fig. 4.
interfac
g0ðx; x0; TÞ ¼ sin3 2p
T
ðx� x0Þ

� �
:

Example II. In this example, e2 = 4 � 10�4, c = 1, and j = 2. For the initial value,
1 ¼ 10�3Gðx; y;0:5; 0:5;8hÞ:
In this example, we can also observe the typical phase transition phenomena: phase separation–coarsening. In contrast to
Example I, because of the bigger interfacial energy density (bigger e) and the different position of the perturbation, different
phase evolution process is observed. See Fig. 3 for the evolution of phase variable and Fig. 4 for the evolution of the energies.
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The energy evolution of Example II. In the figure, the top line is interfacial energy, the middle line is total Cahn–Hilliard energy, and the bottom line is
ial energy.
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Fig. 5. The phase evolution of Example III. For the initial value, the perturbation is near the origin.
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Fig. 6. The phase evolution of Example IV. For the initial value, the perturbation is near the origin.
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Example III. In this example, e2 = 10�6, c = 1, and j = 1. For the initial value,
1 ¼ 10�3Gðx; y;0;0;8hÞ:
In this example, the density of the interfacial energy is much smaller than previous two examples. According to Fig. 5, the
spinodal decomposition took place, but the phase transition stopped before the coarsening process.
Example IV. In this example, e2 = 10�6, c = 0.1, and j = 1. For the initial value,
1 ¼ 10�3Gðx; y;0;0;8hÞ:
The data are almost the same as those for Example III, except the bulk energy for Example IV is one tenth of that of Exam-
ple III. In some sense, the density of interfacial energy for Example IV is amplified. In this example, we can observe the typical
phase transition phenomena (see Fig. 6).
5. Concluding remarks

In this paper, we gave a fully discretized scheme for an initial boundary value problem frequently encountered with the
Cahn–Hilliard equation. We made use of a semi-implicit scheme in the temporal variable, and we established that the energy
property can be expected to be preserved without the inconvenience of nonlinearity in discretization. We made use of a non-
conforming finite element method for the fourth-order problem, which allowed us to discretize the fourth-order problem
directly with finite element spaces of lower-order continuity. The method can be used for other similar fourth-order evolu-
tion problems.

We presented some numerical examples to illustrate the effectiveness of the method. The typical phenomena were ob-
served on fixed triangulation, even when e is small. (Indeed, the cases in which e is small are important in application, and
the small e would bring in subtleties in computation. We refer to [32] for some analysis.) The evolution of the phase and the
energies demonstrated the mechanism of the phase evolution and the competition between the bulk energy and the inter-
facial energy. Particularly, in phase separation stage, the bulk energy was dominant, while in the coarsening stage, the inter-
facial energy was dominant.

The method is well suited for solving the steady-state equation of the system, namely the limit equation of Cahn–Hilliard
equation. Indeed, the steady-state equation is nonlinear, and a fundamental method to solve such an equation is to treat the
solution as a limit of a solution of corresponding evolutionary equation. As the solution of the Cahn–Hilliard equation will
tend to a limit, addressing the long-time behavior of the numerical method is of central importance to the computation of
the steady-state equation.
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So far, the mesh and all parameters in the computation are fixed. It would be possible to make use of adaptive methods in
both spatial and temporal triangulation, and in the parameters. The examples in Section 4 indicated that the time scales for
the two stages are different; therefore, if we are interested in the long-time result, the time step could be loosened in long
time. However, since the continuity of the solution in time at the beginning is subtle, we have to consider carefully the effect
of a smaller time scale near the origin.

The scheme can be used to examine the phase transition in other physical backgrounds. Furthermore, we have observed
several typical phenomena, and this can form a basis for more insights from physical models and mathematical theory with a
view to finding typical initial and boundary conditions. The accuracy of the scheme used upon the Cahn–Hilliard equation
will be discussed in the forthcoming works. Numerical experiments would be designed to test the scheme incidentally. The
theoretical analysis of the scheme, which is absent so far, will depend on a deeper understanding of the Lax equivalence the-
orem and of the structure of the solution of the model problem. It will also be interesting to study the nonconforming ele-
ment based method with the second-order scheme in time, such as the schemes reported in [29,37].
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